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Abstract  17 

Extreme precipitation events are projected to occur more frequently under a warming climate, 18 

posing increasing threats to coastal ecosystems. Hurricane Harvey (2017), the wettest tropical 19 

cyclone in the U.S. history that caused a 1000-year flood in the Houston metropolitan area, 20 

provides an opportunity to study the response of coastal ecosystems to extreme events. As 21 

sessile, epibenthic filter-feeding organisms, oysters are inherently sensitive to changes in 22 

environmental and water quality conditions, making them a good indicator for ecosystem health. 23 

Oyster measurements at 130 sites in Galveston Bay show that the mean oyster mortality 24 

drastically increased from 11% before Harvey to 48% after Harvey. Post-Harvey oyster mortality 25 

exhibited large spatial variability and was up to 100% at some major reef complexes. For all the 26 

oyster sampling sites, brown shells were dominant, while black shells indicating mud burial were 27 

rare. Considering the little impact from sediment deposit, we hypothesized the low-salinity 28 

exposure as the main cause for the massive oyster kill. We conducted a multidisciplinary 29 

(biological-geological-physical) investigation combining the oyster data with bay-wide sediment 30 

core data and results of a previously-validated high-resolution numerical model. Oyster mortality 31 

was found to be significantly and positively correlated with the bottom low-salinity exposure 32 

time (duration of bottom salinity continuously less than 5 PSU), while there was no significant 33 

relationship with the thickness of storm-induced sediment deposit. The physiological aspects for 34 

the impact of low-salinity exposure, the underlying physical mechanisms for the prolonged 35 

salinity recovery, and wider implications of oyster kill in Galveston Bay in the context of global 36 

oyster reef conditions were discussed. The worldwide reported oyster kill events due to extreme 37 

weather events suggest additional pressure posed by future climate on the native coastal oyster 38 
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reefs that are already at the brink of functional extinction worldwide due to centuries of resource 39 

extraction and coastal habitat degradation.  40 

Keywords: oyster mortality; low-salinity exposure; extreme precipitation; Galveston Bay; 41 

Hurricane Harvey 42 

 43 

1. Introduction 44 

 Extreme precipitation and subsequent flooding resulting from intense tropical cyclones 45 

have become more frequent over the past few decades (Knight and Davis, 2009; Donat et al., 46 

2016; Pfahl et al., 2017). Historic amounts of rainfall have been reported more often recently. 47 

For example, Hurricane Floyd (1999) brought up to 61 cm of precipitation in North Carolina 48 

(Atallah and Bosart, 2003), Hurricane Harvey (2017) 130 cm in Texas (Du et al., 2019a) and 49 

Hurricane Florence (2018) 91 cm in North Carolina (Feaster et al., 2018). The likelihood of 50 

extreme precipitation events is projected to increase under a warming climate due to increased 51 

upper ocean heat content and atmospheric humidity (Knight and Davis, 2009; Donat et al., 2016; 52 

Pfahl et al., 2017). In the future, the climate is likely going to be characterized by more extreme 53 

intra-annual precipitation regimes (Knight and Davis, 2009; Risser and Wehner, 2017; Trenberth 54 

et al., 2018).  55 

 Extreme precipitation events and the resulting flooding in coastal areas are posing 56 

increasing threats to human society and have acute impacts or long-lasting influences on coastal 57 

ecosystems (Paerl et al., 2001; Holmgren et al., 2007; Wetz and Yoskowitz, 2013; Biggs et al., 58 

2018). In addition to the dramatic responses in hydrodynamic processes, significant shifts in 59 

phytoplankton and fish communities have been widely observed after heavy floods (Hughes, 60 

2000; Weyhenmeyer et al., 2004; Cardoso et al., 2008; Steichen et al., 2020). The timescales of 61 
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their influence on coastal ecosystems range from days to years and vary from one system to 62 

another, depending on the event’s intensity and the resiliency of the system in both 63 

hydrodynamic and biological processes. Advancing our understanding of the ecosystem’s 64 

response and resiliency to extreme perturbation is of urgent importance in guiding living 65 

resource management and can be facilitated by establishing and assessing appropriate indicators 66 

for ecosystem function and health.  67 

 As sessile, epibenthic, filter-feeding organisms, oysters are inherently sensitive to 68 

changes in environmental and water quality conditions (Lowe et al., 2017), making them an 69 

excellent sentinel organism to examine how extreme weather events may impact the ecosystem 70 

health (Volety et al., 2003). Oysters play an important role in the ecosystem by filtering 71 

phytoplankton, removing particles in the water column, providing food, shelter, and habitat for 72 

fish and invertebrates (Newell and Jordan, 1983; Lenihan et al., 2001), and protecting the 73 

shoreline from erosion (Piazza et al., 2005). Along the northern coast of Gulf of Mexico and the 74 

Atlantic coast of the United States, the eastern oyster (Crassostrea virginica) is the primary 75 

commercially valuable species of oyster (MacKenzie et al., 1997; zu Ermgassen et al., 2013).  76 

 Hurricane Harvey (hereinafter referred to as Harvey) provides an ideal opportunity to 77 

investigate how eastern oysters in natural waters respond to acute external perturbations. The 78 

oyster industry in Galveston Bay made up as much as 22% of the total U.S. harvest and brought 79 

in $14.7 million ex-vessel value in 2004 (NOAA Fisheries landings data: 80 

https://foss.nmfs.noaa.gov/apexfoss/f?p=215:200:641675228657, accessed on November 17, 81 

2020), but oyster landings have significantly decreased since that time. An average annual ex-82 

vessel value was just $7.7 million for 2007-2016 with the landings accounting for only 8.7% of 83 

the national oyster harvest (Texas Parks & Wildlife Department, unpublished data). In 2017, 84 
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Harvey (Fig. 1a) brought record-breaking precipitation (maximum 130 cm over a 5-d period) 85 

and, together with wind-induced storm surge, it caused unprecedented compound flooding in the 86 

Houston-Galveston area (Valle-Levinson et al., 2020; Huang et al., 2020). It delivered a huge 87 

volume of freshwater (14×109 m3) and sediment (9.86×107 metric tons) into Galveston Bay (Du 88 

et al., 2019a, 2019b). The enormous volume of freshwater input, about 3.7 times the bay volume, 89 

made the entire bay virtually fresh for days (Fig. 1), exerting potentially high pressure on the 90 

wild eastern oysters in the bay. Eastern oyster populations thrive at intermediate salinities (10-20 91 

PSU) in most estuaries (Cake, 1983), even though adults can survive under a wider salinity range 92 

(0-42.5 PSU) (Menzel et al., 1966). Prolonged exposure to low-salinity water has been observed 93 

to cause substantial oyster mortality, and oysters are more vulnerable to low-salinity exposure in 94 

warmer water (Levinton et al., 2011; Pollack et al., 2011; Munroe et al., 2013).  95 

 We conducted a multidisciplinary (biological-geological-physical) investigation to 96 

identify the underlying mechanism(s) for the massive oyster kill after Harvey. The observed 97 

post-Harvey mortality rate of eastern oyster at 130 sampling sites is high with large spatial 98 

variability. Previous studies have shown that low-salinity exposure and/or sediment deposit 99 

(smothering) can increase oyster mortality (Volety et al., 2003; Munroe et al., 2013; Colden and 100 

Lipcius, 2015). We applied a validated hydrodynamic model to calculate the “low-salinity 101 

exposure time,” the duration when bottom salinity was continuously below a given threshold, 102 

and examined the relationship between the oyster mortality and the low-salinity exposure time.  103 

We found a significant relationship between the oyster mortality and the low-salinity exposure 104 

time but not with the storm sediment deposit estimated from 56 push cores collected throughout 105 

the entire bay. The physiological mechanisms for the impact of low-salinity exposure and how 106 

the Harvey case implicates coastal ecosystems’ response to extreme weather events were 107 
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discussed. Our findings explain how hydrodynamic processes affect oyster survival under natural 108 

setting during an extreme precipitation event. 109 

 110 

2. Material and Methods 111 

2.1. Measurement of eastern oyster mortality 112 

 Texas Parks & Wildlife Department measured oyster mortality at 130 sampling sites, 113 

covering most of the harvestable public oyster reefs in Galveston Bay on October 2 and 11, 114 

2017, about one month after Harvey made landfall along the mid-Texas coast. Ten samples were 115 

collected at each of the 12 major reef complexes (Fig. 2a) using a 0.5 m-wide “Biloxi style” 116 

oyster dredge, with each dredge pulled at 4.8 km h-1 for 30 sec. All oysters greater than 25 mm 117 

were categorized as live or “boxes”. Boxes here mean recently dead oysters with shells still 118 

attached at the hinge (articulated) and thus were presumably alive before Harvey. Mortality was 119 

determined for each sample based on the number of boxes relative to the total number of live 120 

oysters before Harvey (i.e., live + boxes).  121 

 For comparison, the oyster mortality rate was also determined for pre-Harvey normal 122 

conditions using another 130 samples collected in the fall of 2016. Of them, 100 sites were 123 

sampled in September 2016, but the other 30 sites in the middle of the bay were sampled in 124 

November 2016. Nonetheless, the results are typical of what we usually observed in those areas 125 

prior to Harvey.  126 

 127 

2.2. Storm sediment deposit thickness 128 

 From October 2017 to May 2018, 56 push cores were collected using 7.62-cm diameter, 129 

0.6-cm long polycarbonate core barrels. Upon returning to the lab, the polycarbonate push cores 130 
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were x-rayed using a large animal veterinarian x-ray machine with a digital panel. The thickness 131 

of the Harvey flood layer was visually determined from the x-radiographs based on textural 132 

variations in the strata (see Fig. 5 in Dellapenna et al., 2020). For most cores, the base of the 133 

Hurricane Harvey deposit was easily identified from the x-radiographs as an anomalous 134 

erosional surface with a shell and sand layer (representing the bedload deposit) sitting atop of it 135 

and above this a high-water content mud deposit (representing the suspended load deposit). The 136 

sand layer was clearly evident as a lighter tone in the x-rays and is an anomalous feature within 137 

these cores as they were all collected in areas where the remainder of the cores were mud 138 

dominated. We examined the relationship between the oyster mortality rate and the storm deposit 139 

thickness.  140 

 141 

2.3. Numerical model and simulations 142 

 We employed a pre-calibrated 3D hydrodynamic model (Du et al., 2019c), with the 143 

model domain covering the northwestern Gulf of Mexico (Fig. 1a). The purpose of using the 144 

hydrodynamic model is to overcome the limitation of salinity observations as only a handful of 145 

water quality monitoring stations are maintained for the entire Galveston Bay and data from 146 

these monitoring stations are insufficient to cover the widely-spreading oyster reef areas. The 147 

model is based on the Semi-implicit Cross-scale Hydroscience Integrated System Model 148 

(SCHISM: Zhang et al., 2015, 2016). The model grid contains 142,972 horizontal elements, with 149 

the horizontal resolution ranging from 40 m in the narrow ship channel (surface width of 150 m) 150 

of Galveston Bay (Fig. 1b) to 2.5 km on the shelf and 10 km in the open ocean. The fine grid for 151 

the ship channel is carefully aligned with the channel orientation to faithfully capture the 152 

sharply-changing bathymetry near the channel edge, which is important to accurately simulate 153 
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the salt intrusion process (Ye et al., 2018). Vertically, a hybrid s-z grid is used, with 10 sigma 154 

layers for depths less than 20 m and another 30 z layers for depths from 20 to 4000 m. When 155 

forced by realistic boundary conditions, including the open boundary conditions from FES2014 156 

global tide (Carrere et al., 2015) and global HYCOM model output 157 

(https://www.hycom.org/data/glbu0pt08), atmospheric forcing from the European Centre for 158 

Medium-Range Weather Forecasts (ECMWF: https://www.ecmwf.int), and river discharges 159 

from 15 USGS gaging stations, the model gives a satisfactory reproduction of the observed 160 

hydrodynamic conditions in 2007-2008 inside the Galveston Bay and over the Texas-Louisiana 161 

shelf in terms of water level, salinity, temperature, vertical stratification, and shelf currents. A 162 

more detailed description of the model configuration, including the grid system, bathymetry, and 163 

forcing boundary conditions, and the 2007-2008 model validation results can be found in Du et 164 

al. (2019c).   165 

 This model was applied to simulate the hydrodynamic response of Galveston Bay to 166 

Harvey (Du and Park, 2019). For the Harvey simulation, not only the surface runoff but also the 167 

groundwater discharged were carefully incorporated in the model. Based on a freshwater-fraction 168 

method using measured salinity and velocity at the bay entrance, Du et al. (2019a, 2019b) 169 

estimated that 47% (6.63×109 m3) was through diffusive surface runoff and groundwater 170 

discharge along the bay’s coastline. By adding point sources of freshwater along the bay’s 171 

coastline line to account for this part of freshwater load, the model reproduced well the notable 172 

estuarine responses to Harvey, including long-lasting elevated water level, extraordinarily strong 173 

along-channel velocity with the seaward speed exceeding 3 m s-1, sharp decreases and long 174 

recovery of salinity, and huge river plumes on the shelf. Particularly, this model application 175 

reproduces the temporal and spatial variation of salinity during Harvey very well, with the mean 176 
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absolute error of 1.4 PSU at MIDG at the middle of the bay and TRIN inside Trinity Bay (see 177 

Fig. 1b for their locations) (Du and Park, 2019). The hydrodynamic simulation for Harvey has 178 

been used to examine the dispersion of leaked pollutants in Galveston Bay (Du et al., 2020). The 179 

output of the validated hydrodynamics, specifically the bottom salinity, was used in this study to 180 

quantify the spatially-varying low-salinity exposure.   181 

 A salinity of 5 PSU has been suggested as a critical threshold value for oyster 182 

recruitment, survival, and growth, although the threshold value varies with water temperature. 183 

Soaking in water with salinity at 5 PSU and temperature of 23-25°C can lead to very high 184 

mortality of juvenile oysters, 75% and 96% after 2 and 9 weeks, respectively (Volety et al., 185 

2003). Even for adult oysters, prolonged exposure to low-salinity (<5 PSU) water can lead to 186 

high moralities (Chanley, 1957; Powell et al., 1994).  187 

 We used the validated hydrodynamic model to estimate the low-salinity exposure time 188 

(TE5), defined as the duration for bottom salinity to be continuously lower than 5 PSU, during 189 

Harvey and examined the relationship between the oyster mortality rate and TE5. We then 190 

conducted seven numerical experiments with 0%, 10%, 20%, 30%, 40%, 50%, and 200% of 191 

Harvey’s stormwater ∆Q (the freshwater load due to Harvey, defined as the difference between 192 

the discharge during Harvey and the pre-storm condition: see Fig. 4 in Du and Park, 2019) and 193 

calculated the corresponding TE5 to further investigate the system’s response to different amounts 194 

of stormwater input. The extraordinary amount of Harvey’s stormwater (∆Q) is rare, with the 195 

return period exceeding 1,000 years (van Oldenborgh et al., 2018), but precipitation events with 196 

smaller intensities (e.g., 10%-50% of ∆Q) are likely to occur more frequently. The results from 197 

model scenario runs were used to examine the relationship between TE5 and stormwater input.  198 

 199 
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3. Results 200 

3.1. High oyster mortality after Harvey 201 

 Relative to the pre-Harvey surveys, oyster mortality rate increased dramatically after 202 

Harvey (Fig. 2). Of the 130 sampling sites at 12 major reef complexes, oysters (boxes or live) 203 

were found at 117 sites, while old dead shells (disarticulated shell halves) and some buried shells 204 

were found at the remaining 13 sites. The mean mortality rate for all sites increased from 11% in 205 

the pre-Harvey surveys to 48% in the post-Harvey surveys. The mortality rates after Harvey 206 

exhibit a very large spatial variability, ranging from 10% to 100% (Fig. 2b). Mortality rates 207 

higher than 75% were found at several reef complexes in East Bay (reefs #10 and #11) and west 208 

of the Houston Ship Channel (reefs #1 and #3). In particular, no live oyster was found at reef #11 209 

in the inner part of East Bay. Oyster reefs in Galveston Bay have been recovering since Harvey, 210 

which also varies spatially, with a rapid recovery along the ship channel and a slow recovery in 211 

East Bay, such as reefs #9, #10, and #11 (Texas Parks & Wildlife Department, unpublished 212 

data).  213 

 The disarticulation rates of boxes, which depend on salinity and temperature, have been 214 

found to take less than a year (Ford et al., 2006). However, for the overwhelming majority of the 215 

boxes in the post-Harvey samples, their insides were relatively clean with no fouling organisms 216 

or oyster spat observed, indicating that the oysters had been dead for only a short period of time 217 

prior to sampling. Additionally, there was a dramatic increase in the number of these clean, 218 

empty boxes observed in the post-Harvey samples, indicating a massive mortality event after 219 

Harvey.  220 
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3.2. Oyster mortality vs. low-salinity exposure time and storm sediment deposit 221 

 It has been shown that low-salinity exposure and/or sediment deposit (smothering) can 222 

increase the oyster mortality (Volety et al., 2003; Munroe et al., 2013; Colden and Lipcius, 223 

2015). The observed Harvey flood deposit sediment thickness exhibit large spatial variability 224 

(Fig. 3b). For all oyster sampling sites, brown shells were dominant, while black shells that have 225 

been buried by mud were rare, indicating little impact from sediment smothering despite the 226 

large input of sediment during Harvey. This is confirmed by regression analysis between oyster 227 

mortality rate and the storm sediment deposit thickness, which shows no significant relationship 228 

between them (Fig. 3d). This is likely because oyster reefs are bathymetrically high features, i.e., 229 

they have positive bathymetric relief. The storm flood deposits were mud dominated and settled 230 

out from the suspended load of the flood waters on the seabed, primarily within bathymetrically 231 

low areas. Therefore, there was not much deposition on top of the oyster reefs, with the noted 232 

exception of the area just upstream of the Texas City Dike, where flood deposit was thickest 233 

(Fig. 3b) (Du et al., 2019a; Dellapenna et al., 2020).  234 

 We hypothesized the controlling factor for the spatially varying oyster mortality is the 235 

low-salinity exposure. To quantify the impact of low-salinity exposure, we calculated the low-236 

salinity exposure time based on bottom salinity outputs of the validated numerical model (Du 237 

and Park, 2019). The calculated low-salinity exposure time with a critical threshold of 5 PSU 238 

(TE5) exhibits a very large spatial variability, ranging from a few days to >30 d, with the longest 239 

TE5 in East Bay, Trinity Bay and the upper Galveston Bay (Fig. 3a). Regression analysis revealed 240 

a significant positive linear relationship (r2 = 0.51; p-value = 0.02), indicating a strong spatial 241 

coherence between oyster mortality and TE5 (Fig. 3c). Note that reefs #1 and #12 were regarded 242 

as outliers (see below) and excluded from the regression analysis. We also conducted a 243 
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regression analysis between the mortality and low-salinity exposure time using a critical salinity 244 

ranging from 1 to 10 PSU. A critical salinity of 5-10 PSU gave similar significance of positive 245 

relationship, but no significant relationship was found for a critical salinity of 1-4 PSU with all 246 

p-values > 0.17.  247 

 Of the 12 reef complexes, reefs #1 and #12 were identified as outliers for the linear 248 

regression between oyster mortality and TE5. Reef #1 is located close to the Texas City Dike, a 249 

levee extending 8 km southeast into the mouth of Galveston Bay. It was constructed in 1930s to 250 

protect the Texas City Channel from siltation by sediments transported downstream in the bay. 251 

The sediment core data show that more than 35 cm of Harvey sediment deposited just upstream 252 

of the dike in the area around reef #1 (Fig. 3b). It is at least in part due to the presence of the 253 

Texas City Dike, which hinders the transport of sediments from the main bay to West Bay and 254 

thus facilitates the accumulation of sediments on the upstream side of the dike. The main reason 255 

for the oyster kill at reef #1 is therefore likely sediment smothering rather than freshwater 256 

soaking. As for reef #12 in Trinity Bay, poor conditions have been observed for many years prior 257 

to Harvey with low abundance of live oysters and large amounts of black, buried shells (Texas 258 

Parks & Wildlife Department, unpublished data). Our post-Harvey survey data also show that 259 

most shells were empty and old at reef #12, for which a recent event like Harvey was not likely 260 

to be responsible.  261 

 262 

4. Discussion  263 

4.1. Cause(s) for the massive oyster kill  264 

 Oyster kill in the coastal sea can be caused by a variety of processes, including viral 265 

infection, sediment smothering (or siltation), reduction of river flow (leading to high salinity), 266 
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flooding (leading to low salinity), extreme weather, habitat destruction, and hypoxia (Mackenzie, 267 

2007; La Peyre et al., 2013). During a storm event, the storm-induced sediment deposition and 268 

flooding are presumably regarded as the two prominent causes for the subsequent oyster kill in 269 

Galveston Bay. Field surveys suggest little evidence of sediment smothering, since black shells 270 

(indicting mud deposition) were rare. The most probable reason accounting for the massive 271 

oyster kill is the flooding-induced low-salinity exposure. This hypothesis is confirmed by the 272 

significant positive relationship and spatial coherence between oyster mortality and low-salinity 273 

exposure time (Fig. 3c). While it is always risky to use correlation analysis to indicate the 274 

causality, the major conclusion regarding the cause of oyster kill during the storm events is still 275 

valid as other prominent causes (e.g., hypoxia, viral infection) can be excluded. Hypoxia is rarely 276 

observed in Galveston Bay, mostly because of the bay’s shallow bathymetry (mean depth of 277 

about 2.5m, see the bay’s bathymetry in Fig. 1b). Viral infections are more frequently seen after 278 

severe droughts and high salinity conditions, ant thus unlikely to happen following the 279 

extraordinary freshwater load during Harvey.  280 

 The influence of exposure to low-salinity water has been examined in previous studies 281 

with laboratory experiments that usually examined the response to constant salinities (Loosanoff 282 

1953; Volety et al., 2003). The laboratory setting is unnatural as salinity in natural coastal water 283 

fluctuates at tidal and subtidal time scales. The TE5-mortality curve in Fig. 3c, therefore, would 284 

be closer to the response in natural systems. Despite uncertainties associated with spatially 285 

varying storm deposits, this curve can serve as an efficient guideline for a quick assessment of 286 

the stress imposed on oysters by flooding events during the warm summer months. For example, 287 

a 14-d exposure of low-salinity (5 PSU) may lead to 50% mortality under the water temperature 288 

of 28±2.6°C (measured at the bay entrance in September 2017). For flooding events during the 289 
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cooler winter months or in cooler environments, the mortality under the same duration of low-290 

salinity exposure is expected to be lower.  291 

 The impact of low-salinity exposure is also manifested in the typical spatial distribution 292 

of oysters along the salinity gradient in estuaries. Reefs located near the head of an estuary where 293 

salinity is low are sparsely populated due to frequent flooding and high mortality rates; the 294 

population is dense in the middle of estuaries with intermediate salinity; and the population 295 

becomes sparse toward the higher salinity waters near the mouth of the estuary where parasitic 296 

infection and predation pressure are high (Bergquist et al., 2006; Volety et al., 2009). 297 

 The effect of low-salinity exposure on oyster mortality depends highly on seawater 298 

temperature. In explaining the summer mortality event of the Pacific oyster in France, Samain 299 

and McCombie (2008) showed that mortalities occurred only when seawater temperature 300 

exceeded a threshold of 19-20°C. Once temperatures exceed this threshold, oysters usually reach 301 

the pre-spawning stage characterized by a negative energy budget: energetic resources attain 302 

their lowest level whereas energy demand and reproductive effort are at their highest. In 303 

addition, the haemocytes, the invertebrate blood cells involved in defense mechanisms, also 304 

show their lowest performance when the temperature is high (Gagnaire et al., 2006). As a result, 305 

the flooding event during the summertime, such as the case of Harvey, will have a more negative 306 

impact on oyster survival compared to those during cooler seasons. A comparison study (La 307 

Peyre et al., 2013) also showed dramatically different impacts on oysters at Breton Sound (near 308 

Mississippi River outflow) of two flooding events, one during the hot summer month of 2010 309 

(temperature > 25°C, high mortality) and the other during the spring of 2011 (temperature < 310 

25°C, low mortality). It is worth noting that the influence of temperature during Harvey is 311 

unlikely contribute to the spatial heterogeneity of oyster mortality, since the air and water 312 
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temperature are usually identical among different regions due to the limited length (~40 km) and 313 

width (~40 km) of the bay.  314 

 Bivalves including oysters can cope with low salinity for a short period by releasing a 315 

suite of stress response genes, closing their valves, and shifting to anaerobic metabolism to 316 

isolate their internal tissues in order to maximize their survival under extreme conditions 317 

(Michaelidis et al., 2005; Zhang and Zhang, 2012). Short-term exposure to low salinity 318 

sometimes may even enhance the population by reducing predators (e.g., oyster drill, whelk) and 319 

parasites (e.g., Perkinsus marinus) (La Peyre et al., 2003; Levinton et al., 2011; Pollack et al., 320 

2011). However, if they need to close their valves for too long, the accumulation of toxic 321 

compounds and the unfavorable energetic balance inside the shell will eventually lead to their 322 

mortality. 323 

   324 

4.2. Mechanisms for spatially-varying low-salinity exposure time 325 

 This study shows the important physical control (low-salinity exposure) on the oyster reef 326 

ecosystem (oyster mortality). Then, what are the mechanisms for the low-salinity exposure to 327 

vary spatially over a wide range from a few days to >30 d? Based on the decomposition of salt 328 

flux at the bay entrance, Du and Park (2019) showed that it was the tidal pumping that was most 329 

important for the salinity recovery in the bay after Harvey. The salt flux induced by two-layer 330 

exchange flow was at least one order of magnitude smaller, with the exception immediately after 331 

the input of extraordinarily large freshwater when a large horizontal salinity gradient existed 332 

between the fresh bay and the salty coastal water (Fig. 9 in Du and Park, 2019). Because of a 333 

small tidal range and the resultant weak tidal pumping, the overall salinity recovery was slow in 334 
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Trinity Bay and East Bay (recovery time > 3 months), while the salinity in the lower bay and 335 

near the ship channel recovered much more quickly.  336 

 Besides the weak tidal exchange, the highly confined geometry of the coastal bay system 337 

also hinders the estuary-shelf exchange. Galveston Bay is connected to the shelf seas with three 338 

narrow outlets. Even the main entrance that accounts for 80% of the water exchange is just 2.5 339 

km wide. The narrow outlets and confined geometry amplify the impact of flooding events. The 340 

prolonged salinity recovery after major precipitations events is likely to occur for estuaries with 341 

similar geometry in the northern Gulf of Mexico, e.g., Apalachicola Bay, Mobile Bay, 342 

Matagorda Bay, Aransas Bay, and Corpus Christi Bay.  343 

 344 

4.3. Impact of stormwater input: Lessons learned from Harvey 345 

Interesting and important questions for resource assessment and management are: (1) 346 

how the bay will respond to different amounts of stormwater input; and (2) how much 347 

stormwater the bay can receive without significantly increasing oyster mortality. The results for 348 

TE5 from a series of scenario runs with different amount of freshwater input (Fig. 4) provide 349 

valuable information for these questions. As stormwater enters from the main rivers, TE5 starts to 350 

increase first in the San Jacinto Estuary in the upper bay and at the mouth of Trinity River where 351 

its discharge enters Trinity Bay, and high TE5 expands quickly in Trinity Bay with increasing 352 

stormwater. With 50% of Harvey’s stormwater (i.e., 0.5×ΔQ), the entire Trinity Bay has TE5 353 

larger than two weeks. The results of numerical experiments also suggest that most of the oyster 354 

reefs in the bay may be able to sustain 20-30% of ∆Q (i.e., 2.8-4.2×109 m3 discharge over a 355 

similar duration as with Harvey). With 20%-30% of ∆Q, TE5 are larger than 7 d only in the 356 

regions where there are no reefs with live oysters (Fig. 4c,d). 357 
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The relationship between the bay bottom area with TE5 > 7 or 14 d and the amount of 358 

stormwater input (Fig. 4i) provides another valuable information for the two important questions. 359 

The bay bottom area with TE5 > 7 or 14 d increases as stormwater input increases but in a 360 

nonlinear way. ∆Q is about 3.7 times of bay’s volume, meaning that 1/3.7 (27%) of ∆Q would be 361 

large enough to flush the entire bay. As a result, the area with TE5 > 7 or 14 d increases rapidly 362 

and almost linearly when stormwater increases from 10% to 40% of ∆Q, beyond which the rate 363 

of increase reduces. When exceeding 27% of ∆Q, more freshwater coming in will not make the 364 

bay fresher, but it can result in fresher shelf water (Du and Park, 2019) and hence will increase 365 

TE5 but with a slower rate.  366 

 It is worthy noting that about half of the freshwater load into Galveston Bay during 367 

Harvey was through surface runoff along the coastline and groundwater (Du et al., 2019a). 368 

Groundwater is increasingly recognized as an important freshwater and nutrient source to coastal 369 

waters (Moore et al., 2010; Marazuela et al., 2018; Luijendijk et al., 2020). While it is hard to 370 

isolate the groundwater’s contribution, the influence of groundwater input is presumably more 371 

long-lasting than the surface runoff. However, considering the intensive urbanization around 372 

Galveston Bay, the impact of groundwater is likely less than what one would expect in a rural 373 

coastal area.  374 

4.4. Flooding induced oyster kill: a worldwide problem  375 

 Massive oyster kill caused by prolonged exposure to low-salinity water is not unique to 376 

Galveston Bay. It has been reported worldwide (Fig. 5). For example, Hurricane Irene and 377 

Tropical Storm Lee (2011) generated extreme flooding in the Delaware River and led to high 378 

oyster mortality (10-50%) in the upper Delaware Bay (Munroe et al., 2013). Most of the 379 

documented oyster kills were caused by prolonged low-salinity exposure after flooding (Table 380 
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1). Besides hurricanes, other processes could also cause flooding in coastal waters. Oyster 381 

mortality due to opening of flood-control spillways has been reported in multiple coastal waters 382 

(e.g., La Peyre et al., 2013; Gledhill et al., 2020). For instance, after the Deep Horizon drilling 383 

platform explosion in April 2010, a large volume of Mississippi River freshwater was released 384 

from diversion structures to keep oil from reaching sensitive coastal wetlands. As a consequence, 385 

oyster densities in coastal waters near the Mississippi Delta reached an extreme low in 2010, 386 

with little recovery in 2011 and 2012 (Grabowski et al., 2017; Powers et al., 2017). Note that the 387 

documented oyster kill events in Table 1 likely represent a small portion of the impact of floods 388 

on oyster reefs around the world, since oyster mortality in many coastal systems is not as 389 

systematically monitored as is done for Galveston Bay by Texas Parks & Wildlife Department.  390 

 The future climate, characterized with more frequency of extreme weather events (e.g., 391 

marine heat wave, severe drought, intense storms), is expected to pose additional pressure to the 392 

native coastal oyster reefs that are already at the brink of functional extinction worldwide due to 393 

centuries of resource extraction and coastal habitat degradation (Beck et al., 2011). More 394 

restoration and management efforts are needed to reverse the loss of oyster reefs and restore the 395 

vital ecosystem services provided by oyster reefs.  396 

 397 

Concluding Remarks 398 

 The massive oyster kill in Galveston Bay after Harvey sheds light on how an extreme 399 

weather event could impact coastal ecosystems and resources. Changes in physical conditions, 400 

particularly the salinity, after either natural or human-controlled flooding events, could greatly 401 

affect the survival of benthic organisms, such as oysters. The impact of flooding events is 402 

particularly drastic for coastal systems with low flushing capacity (e.g., a lagoon-type estuary). 403 
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Such coastal systems are widely distributed around the world. With the increasing frequency of 404 

extreme weather events as projected by climate models, ecosystems in this type of coastal 405 

environment will likely face more challenges in the future.  406 

 407 
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 677 
Fig. 1: Salinity variation during Hurricane Harvey. (a) Track of Hurricane Harvey with the 678 
model domain (red dashed rectangle), (b) the zoom-in of Galveston Bay showing the nodes of 679 
the unstructured model grid (colored dots showing depths), names of sub-bays, and locations of 680 
four salinity monitoring stations (solid green squares), and (c-f) time series of salinity at the four 681 
stations. Salinity data in (c-f) clearly show the entire bay had been virtually fresh over several 682 
days, with the blue shades denoting the period when salinity was continuously lower than a 683 
critical threshold value of 5 PSU.  684 

 685 

Fig. 2: Observed oyster mortality rate. (a) The oyster mortality rate at 130 sampling sites in 686 
October 2017, a month after the extreme precipitation by Hurricane Harvey, and (b) changes in 687 
oyster mortality rate before and after Hurricane Harvey at 12 major reefs. In (a), the numbers 688 
indicate the 12 major oyster reef complexes with different symbols indicating different reef 689 
complexes. In (b), the post-Harvey mortality rates were measured in October 2017, a month after 690 
Hurricane Harvey, while the pre-Harvey values were based on measurements in the fall of 2016.  691 
 692 
Fig. 3: Relationship between oyster mortality vs. low-salinity exposure time and storm sediment 693 
deposit. (a) Low-salinity exposure time for bottom water with a threshold of 5 PSU (TE5) based 694 
on simulations from a previously calibrated 3D hydrodynamic model and (b) sediment deposit 695 
thickness based on the x-ray analysis of sediment cores collected from 56 locations (●), and (c-d) 696 
their relationships with the oyster mortality rate with the linear regression (solid line) and 95% 697 
confidence interval (dashed lines). Note that the regression analysis in (c) does not include the 698 
two outliers, reefs #1 and #12. At reef #1. sediment deposit is thicker than 35 cm, and the high 699 
mortality was likely to be caused mostly by sediment smothering (see the text). At reef #12, most 700 
of the oysters collected were old shells.  701 
 702 

Fig. 4: Results of model scenario runs with different stormwater input. (a-h) Distribution of the 703 
low-salinity exposure time with a threshold salinity of 5 PSU (TE5) for different amounts of 704 
stormwater, i.e., 0%, 10%, 20%, 30%, 40%, 50%, 100% and 200% of the Harvey’s stormwater 705 
∆Q and (i) the bay bottom area with TE5 > 7 d (solid line) and 14 d (dashed line) as a function of 706 
stormwater input. 707 
 708 

Fig. 5: Documented oyster kill (red text) and the health condition of worldwide oyster reefs 709 
(filled circles) from Beck et al. (2011).  710 
 711 
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Table 1: A list of reported major oyster kill events.  712 

Location Time Description References 

Moreton Bay, 
Australia 

Late 
19th 

century 

Declined oyster reefs after major flood events in the late 19th century. Diggles 
(2013) 

Matsushima Bay, 
Japan 

1958 Severe moralities were reported following the 1958 El Nino. Imai et al. 
(1965) 

Apalachiocola 
Bay, US 

1960 
-1984 

Oyster landing was low in years when flows exceeded 30,000 cfs for 
100 days or more. 

Wilber 
(1992) 

Northern Gulf of 
Mexico, US 

1950 
-2003 

Oyster harvests in five major estuaries were inversely related to 
freshwater inflow. Most of the lows in landing (17 of 19) coincided 
with peaks in discharge of major rivers feeding their estuaries. Opening 
of Bonnet Carré spillway lowered oyster landing in Mississippi. 

Turner 
(2006) 

Puget Sound, US 1998 Oyster mortality was high in the late summer when dissolved oxygen 
was low. 

Cheney et al. 
(2000) 

Morlaix Bay, 
France 

1999 The mortality was associated with Vibrio strain, whose effect was more 
serious under higher temperature. 

Lacoste et al. 
(2001) 

Wonboyn Lake, 
Australia 

2002 An unprecedented mortality (15-100%) of Sydney rock oyster in 
aquaculture zones was associated with severe inflammation, which was 
possibly caused by bloom of dinoflagellate. 

Ogburn et al. 
(2007) 

Tomales Bay, US 2003 High levels of mortality were observed and related to the presence of 
Ostreid herpesirus, whose impact appeared to be stronger when 
temperature was higher. 

Burge et al. 
(2006) 

Bannow Bay and 
Dungarvan 
Harbour, Ireland 

2003 Mass mortality event (>20%) of oyster occurred and was associated 
with high temperature and high nutrient. 

Malham et 
al. (2009) 

Mission–Aransas 
Estuary, US 

2007 Flood event caused reduction of oyster abundance. Oyster population 
recovered within 1 year. 

Pollack et al. 
(2011) 

Thau lagoon, 
France 

2008 A major oyster mortality event coincided with a nationwide increase of 
~1.5°C in winter seawater temperature. 

Pernet et al. 
(2010) 

Breton Sound, 
Louisiana, US 

2010 Management responses to Deepwater Horizon oil spill caused an 
extended low-salinity (<5 PSU) in hot summer months, which led to a 
high mortality and low recruitment of oyster. 

La Peyre et 
al. (2013) 

Delaware Bay, US 2011 Two storm events (Hurricane Irene and Tropical Storm Lee) generated 
extreme flooding in Delaware River and caused prolonged baywide low 
salinity. Monthly mortality was up to 55%. 

Munroe et al. 
(2013) 

Sanfrancisco Bay, 
US 

2011 A series of atmospheric river made landfall within California, driving 
an extreme freshwater discharge and leading to nearly 100% of oyster 
mortality at the northern bay. 

Cheng et al. 
(2016) 

Port Stephens, 
Australia 

2013 
-2014 

Spatial variations in oyster microbiome were characterized by the 
relative abundance of pathogenic bacteria. 

King et al. 
(2019) 

Tasmania, 
Australia 

2016 Ostreid herpesvirus-derived mortality linked with the long and intense 
marine heat wave. 

de Kantzow 
et al. (2017) 

Mississippi 
Sound, US 

2019 The mortality event was caused by opening of Bonnet Carré Spillway to 
release pressure from high discharge of Mississippi River on New 
Orleans. 

Gledhill et 
al. (2020) 

 713 







  

TE5 (days)

M
o
rt

a
lit

y 
(%

)

(c)

95% Confidence

(a) (b)

(d)
M

o
rt

a
lit

y 
(%

)

Storm deposit (cm)

Slope=4.02±1.39







  
Low-salinity exposure time (days)

M
o
rt

a
lit

y 
(%

)

95% Confidence

Slope=4.02±1.39

Oyster mortality  in Galveston Bay

Flooding 
Large sediment load 

Oyster kill




